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Abstract: Hanabi is a cooperative card game that has served as a testbed
for exploring theory of mind (ToM) in decision making tasks in multi-
agent settings. We design training objectives to facilitate ToM reasoning
for self-play Hanabi. Specifically, we train a Reinforcement Learning agent
to predict its own cards, and use these predictions to bootstrap training for
higher order beliefs.
Our code is available at https://github.com/dubai03nsr/hanabi-learning-
environment.
Our video can be accessed at https://youtu.be/0Bl7VyVs3XU.

1 Introduction

Games are some of the most popular and successful applications for Reinforcement Learning
(RL). One reason is that, in comparison with real-world scenarios, games tend to have more
clearly-defined rules and objectives and can be more easily abstracted into simple, finite
environments (i.e. state and action spaces, etc). Moreover, due to the popularity of many
of these games, we are able to access large amounts of gameplay as data for planning and
learning, as evidenced by progress in boardgames such as Go [1, 2], Backgammon [3, 4, 5, 6],
checkers [7, 8], and chess [9]. As a result, the field has achieved remarkable success in learning
how to play many of these games. For instance, policies learned by AlphaGo [1] and AlphaGo
Zero [2] were able to achieve impressive win rates in Go utilizing Monte Carlo Tree Search,
beating the top professional human players at the time [10]. Additionally, AlphaGo Zero
even produced novel gameplay strategies that were previously unknown to human players
[10].
However, while these formalizations, methods, and results have been instrumental in pro-
gressing the field of RL, the games they have been applied to are largely restricted to
competitive, zero-sum settings [11]. In contrast, most real-world examples as well as more
complex games typically involve, at least partially, elements such as communication, coor-
dination, imperfect information, and joint decision-making. This can introduce additional
complexities to learning in the purely competitive setting, as agents can benefit from and
thus need ways to process and model other agents’ behavior and gameplay strategies.
For instance, Lerer et al. [12] abstracted the cooperative game setting into two distinct
problem formulations: (1) by converting it into a regime where all other players play by
a predetermined policy except for a single agent, and (2) a multi-agent setting where each
player learns their own policy and only falls back to the predetermined policy if it fails
to find the optimal policy. The authors proved that both formalizations achieved per-
formance levels at least as high as the predetermined baseline policy. Taking a different
approach, work by Schroeder de Witt et al. [13] has shown that in multi-player settings, be-
ing able to share common knowledge across players can facilitate learning and improve task
performance. By modeling gameplay as a decentralized partially observable Markov deci-
sion process (Dec-POMDP), the authors introduced an algorithm (MACKRL) that enabled
groups of players to utilize their common knowledge to collectively choose actions while still
learning a decentralized policy. They showed that this method not only beats baselines but
also the state-of-the-art when applied to a matrix game and StarCraft. Dec-POMDP has
now become foundational in how we model similar cooperative environments.

https://github.com/dubai03nsr/hanabi-learning-environment
https://github.com/dubai03nsr/hanabi-learning-environment
https://youtu.be/0Bl7VyVs3XU


Recently, the concept of Theory of Mind (ToM) has been studied in the context of RL for
cooperative gameplay. ToM refers to the ability to infer the mental states – that is, beliefs,
intents, knowledge, etc. – of others and how they influence interactions and behavioral
outcomes. This is built upon the understanding that other people may hold beliefs, desires,
and intentions that are different from one’s own, which can lead to different perceptions of
shared contexts as well as different action choices [14, 15]. In the context of RL, integrating
ToM allows agents to reason about the beliefs and intentions of other agents within a shared
environment, which is crucial for effective collaboration and coordination in cooperative
settings, something that has not yet been thoroughly explored [16].
We explore this in the game of Hanabi, a cooperative card game where players have limited
information about the environment (i.e. hidden cards) and thus must work together (e.g.
through hints) to fill in these gaps in order to determine what the optimal action should be.
In our work, we design training objectives to support ToM reasoning in self-play Hanabi,
training each agent to predict its own cards and bootstrapping these predictions to model
beliefs of other players’ cards (higher order beliefs). By incorporating ToM reasoning into
the learning process, our goal is to evaluate how ToM reasoning influences performance
outcomes in this cooperative setting.

2 Hanabi

Hanabi (from Japanese 花火, fireworks) is a cooperative card game: the players aim to
maximize a common score. Crucially, a player can see everyone’s cards but their own,
making Hanabi a decentralized partially observable Markov decision process (Dec-POMDP)
[13].

2.1 Game Rules

A card (r, c) has a rank r ∈ [5] and a color c ∈ {red, yellow, green,white, blue}. For each
color, there are 10 cards with respective ranks [1, 1, 1, 2, 2, 3, 3, 4, 4, 5]. The game begins
with a shuffled deck of the 50 cards face down, 8 hint tokens, and 3 life tokens. The tokens
are shared by all players. Each player is dealt 5 cards (if there are 2-3 players) or 4 cards
(if there are 4-5 players). As mentioned above, what is unique about Hanabi is the fact
that each player cannot see the cards in their own hand, but can only see the cards of the
other players. This makes cooperation, through strategies such as providing hints to other
players, a core part of Hanabi gameplay.
The players take turns playing in clockwise order, starting with an arbitrary player. On a
player’s turn, she may play a card, discard a card, or give another player a hint. If she plays
or discards a card, it goes to the field or the graveyard, and she draws a card from the deck
unless it is empty. Cards in the field and graveyard are visible to all players.
If she plays a card (r, c), it goes to the field (a “successful play”) if the cards in the field
with color c are exactly the r − 1 cards with rank < r. Otherwise it goes to the graveyard
and a life token is lost. If a rank 5 card was successfully played, a hint token is gained up
to a maximum of the initial 8.
If she discards a card, it goes to the graveyard and a hint token is gained; if all 8 are
available, she cannot discard.
If a player gives a hint, a hint token is lost. If none is remaining, she cannot give a hint. To
give a hint, the player must choose another player and a rank or color, and announce the
set of his cards (referred to by their position in his hand) with that rank or color. This set
cannot be empty.
The game ends when one of the following occurs: (1) all life tokens are lost, (2) the last
card in the deck is drawn and each player goes one more time, (3) a rank 5 of each color is
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Figure 1: An illustration of Hanabi gameplay with 4 players, from the perspective of Player
A. Cards that are grayed out signify those that Player A cannot view. All colors have a
card on the field except for green. The players have used up 3 hint tokens and 1 life token.

in the field. In the first case, the score is 0. Otherwise, the score is the number of cards in
the field (maximum of 25). See figure 1 for an illustration of a 4-player Hanabi game.

2.2 Reinforcement Learning Formulation

In the reinforcement learning formulation of the game, a player is an agent. In our experi-
ments, we consider a two-player self-play setting, where the agents are copies of each other
(illustrated in Figure 2). We discuss the ad-hoc setting in Section 6.
The state consists of the current player index, player hands, field, graveyard, number of life
tokens, number of hint tokens, and number of cards in the deck.
The state-derived observation would be the state but without the current player’s hand.
However, following Bard et al. [17]’s Rainbow agent, we augment the observation with his-
tory information. We call the “snapshot” observation, which is the state-derived observation
plus the previous player’s action and the hint information about the current player’s hand.
Then the (augmented) observation is the concatenation of the agent’s most recent hs snap-
shot observations, for a history size hs. Note that this augmentation still does not include
the sequence of actions beyond the previous action, which could be vital for coordinating
strategies. While further augmenting the observation may lead to improvements, this is not
the focus of our project, so we retain consistency with Bard et al. [17]’s Rainbow baseline.
The possible actions are playing a card, discarding a card, and giving a hint. Since there
are 2 players and thus 5 cards in each hand, and there are 5 ranks and 5 colors, the number
of possible actions is at most 5 + 5 + (2− 1)(5 + 5) = 20. (Some of the play/discard moves
will be invalid if there are no cards left in the deck to replace a missing card. Some of the
hint moves will be invalid if the other player does not have cards of certain attributes.)
The transition probabilities obey the game rules above, where the stochasticity of the envi-
ronment comes exclusively from the shuffle of the deck.
The reward function is deterministic: 1 after a successful play, negative the prior return
after losing the last life, and 0 otherwise. Following Bard et al. [17], we use a discount factor

3



Figure 2: Two player self-play setting. Here, the state space is augmented with the Player
B’s prior action (discarding Red 4 and drawing Green 2 from the deck) as well as a prior
hint that the two left cards in Player A’s hand are blue.

of 0.99. However, we note that this choice is inconsistent with the way the game is scored
– the final score is simply the total number of successful plays without discounting.

3 Methods

3.1 Baseline

Figure 3: Model architecture at inference.

The baseline we use is the Rainbow agent
implemented in the Hanabi Learning Envi-
ronment (HLE) [17]. The Rainbow agent
architecture [18] combines improvements to
Deep Q-Networks [19], such as distribu-
tional Q-learning [20] and prioritized expe-
rience replay [21]. The model architecture
is a 2-layer feedforward neural network with
a hidden dimension of 512 units that inputs
the observation and outputs a distribution
over the 51 discrete Q values (−25, . . . , 25)
for each action. A replay batch of size 32
is trained on every 4 agent steps. For the
observation, we use a history size of hs = 2.

3.2 Theory of Mind Objectives

Theory of mind (ToM) is a central theme in
the game of Hanabi. Especially since com-
munication is limited, players must make
moves by inferring the observer’s interpre-
tations and interpret moves by inferring the
actor’s intentions. We formalize this notion
recursively with a family of ToM objectives.
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Given an agent i and its observation oi, a
model ToM0 is trained to predict, for each
of the agent’s cards, a probability distribu-
tion over the set of ranks and a probability distribution over the set of colors. Since the
agent’s true card attributes are known to the creators of the environment, we can train
ToM0 for this task with cross-entropy loss.
For higher orders k ≥ 1 of ToM, let P be the set of agents, let p = {pi ∈ P}i∈[k+1] be a
sequence of k + 1 agents, and let ok and ok+1 be the (simultaneous) observations of agents
pk and pk+1. We train ToMk(p≤k+1, ok+1) to predict ToMk−1(p≤k, ok). In other words,
agent pk+1 predicts what agent pk predicts about what agent pk−1 predicts about . . . what
agent p1 predicts about his cards. Since we have ToMk−1 as computed by the agents, we
can train ToMk again with cross-entropy loss.
As an intuitive compromise between computation and training signal, we use up to order 1
ToM. For example, first order ToM allows for teaching an agent how his hint is interpreted
by another agent, if we train ToM1 on observations before and after he gives the hint.
Figure 3 shows the model architecture at inference. The modules in purple represent a
feedforward neural network with a single hidden layer with a dimension of 512, followed by
an appropriate softmax. To the ToM1 module, a player index is given, representing the
agent of whom the current agent seeks to predict the order 0 beliefs. (In our 2-player game,
there is only one other player.) We refer by the “ToMk method” to the Figure 3 model
where the ToM modules are kept up to order k. The baseline includes none of the ToM
modules.
To train the ToM0 and ToM1 modules, each replay memory is augmented to include the
agent’s own cards and the other agent’s order 0 beliefs from the previous turn. The outputs
of the ToM heads are used to compute their loss functions, and the gradient is stopped
between the ToM modules and the Q head.

4 Experiments

Figure 4: The average of the final 50 points are 10.56
for cheat, 9.26 for base, and 7.39 for ToM0.

Figure 4 shows the training tra-
jectories for methods built on the
Rainbow agent implemented in
HLE [17]. Training and experi-
ment runs were executed in an en-
vironment we built based on the
HLE codebase provided by Bard
et al. [17] with the modifications
described in sections 2.2 and 3.
The agents are trained for 1000
iterations, each with 5000 agent
steps. Every 4 agent steps, a re-
play batch of size 32 is trained on
those steps. The base method is
the original Rainbow agent, and
the cheat0 method is the ToM0

method but with the ToM0 mod-
ule prediction replaced with the
agent’s true hand. We consider
cheat0 an upper baseline, since

playing with all cards visible is trivial for human players. We find that ToM0 underperforms
the baseline, and provide discussion in Section 6.
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Due to compute limitations, we were unable to finish the experiment for ToM1 and we were
unable to run methods many times for significance testing. Running the base Rainbow model
for 1000 iterations (5 ·106 agent steps) takes ~25 GPU hours on an A40, and our models take
longer due to the additional model components. Training for at least 500 iterations seems
necessary, since the distinction between the baseline and cheat0 does not become clear until
beyond that point.

5 Related Work

Hanabi self-play: Existing work has explored Hanabi as a multiagent problem in the
self-play regime, where the RL agent learns by playing against itself [17, 22, 12, 11]. Early
work used the online, decision-time planning algorithm Monte Carlo Tree Search (MCTS) to
produce optimal gameplay actions [22, 23]. For example, Goodman [22] won the Conference
on Games competitions in 2018 and 2019 utilizing IS-MCTS [24] as its base action-selection
algorithm and using neural networks to model the policy and value function. On the other
hand, Fickinger et al. [25] found that tabular RL methods such as SPARTA (Simultaneous
Policies, Actions, Rewards, and Trajectories for Actors) [12] can quickly become intractable
when performing multiple-step lookahead searches. Instead, they proposed an inference
time policy-tuning method based on Q-Learning, which was able to significantly outperform
the tabular SPARTA method in multi-agent settings and perform lookahead searches when
computating resources are sufficient. Hu and Foerster [11] developed a Simplified Action
Decoder (SAD) that allows agents to balance exploration and exploitation in the group
setting by observing both the greedy and exploratory actions made by their teammates in
a 2-5 player self-play regime. They observed performance improvements over the baselines
from Bard et al. [17] and the Bayesian Action Decoder agent [26], a state-of-the-art in the
two-player setting.
Ad-hoc play in Hanabi: Subsequent research has also looked at ad-hoc methods [27, 28]
to address limitations in the self-play setting. Examples include sub-optimal or incompatible
policies when extended to real-world cooperative gameplay, such as an overdependency on
initial values or overfitting to policies that are optimized for playing against agents previously
encountered (i.e. themselves) [17, 29, 30, 31, 32, 33]. For instance, Canaan et al. [29] utilize
behavioral features (MAP-Elites) to generate a set of initial policies as opposed to using
a neural network as in Goodman [22]. However, the results have been mixed. Bard et al.
[17] found that even using actor-critic deep RL techniques with an Importance Weighted
Actor-Learner yielded worse performance than rule-based methods, and in ad-hoc settings
outright failed to cooperate.
Proximal Policy Optimization (PPO) methods [34] have become the state-of-the-art rein-
forcement learning algorithm, yet have not been popular in multi-agent scenarios due to a
common critique that it lacks sample efficiency in comparison with off-policy approaches.
However, Yu et al. [30] found that applying PPO to the cooperative ad-hoc setting in fact
resulted in increased sample efficiency and average returns, particularly in configurations
with more than 2 players.
Recent work has also approached the ad-hoc setting through the lens of zero-shot coor-
dination (ZSC) – that is, playing with other players (either AI or human) the agent has
never encountered before [32, 31]. As a starting point, Hu et al. [32] extended the self-play
setting by explicitly considering the possibility of coordinated symmetry breaking in group
settings – where multiple maximal policies can exist simultaneously – into the policy objec-
tive function. They found that using this method, which they call other-play (OP), agents
were able to achieve higher game scores than the self-play state-of-the-art when playing with
humans. However, if these symmetries are unknown or cannot be obtained, OP becomes yet
another self-play problem, and resulting policies may fail to be optimal in the multi-agent
setting. Instead, if we have access to the entire state-action trajectory, generalizing the
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Jensen-Shannon divergence across policies can allow us to train agents to produce the best
response strategy given the strategies of other players in the multi-agent setting, as Lupu
et al. [31] have shown.
Other extensions and strategies: Other work has also explored Hanabi gameplay in the
human-AI collaboration setting, using natural language instructions provided by humans as
a way to align the RL agents to strategies that humans desired [35]. Here, the authors use
LLMs to generate a prior policy based on initial human instructions and a natural language
description of feedback from policy rollouts in the environment. This is then used as the
reference policy to train the RL agent. Hu et al. [33] explore the concept of self-explaining
deviations (SEDs), or actions that do not follow commonly-accepted behavior, as a strategy
of Hanabi gameplay (e.g. hinting strategy) to influence other players to take certain actions.

6 Discussion

6.1 Results

We discuss our hypotheses for the poor performance of ToM0 compared to the baseline in
Figure 4.
Upon inspecting some episodes of the ToM0 method after training for 1000 iterations, we
found that the ToM0 predictions can largely be explained by the hints explicitly given. In
other words, at the stage where the average return is under or about 10, they have not
developed complex protocols and thus the most reliable signal for ToM0 is explicit hints.
This is partially explained by not training for long enough and by the exclusion of the ToM1

objective for predicting how one’s actions affect other agents’ beliefs, but there is a deeper
reason in the observation, discussed next. As for why we see loss in performance rather than
mere retention, since the concatenation of the ToM0 with the state increases dimensionality,
learning becomes harder.
As described in Section 2.2, the observation does not include the sequence of actions beyond
the previous action, which could be vital for coordinating strategies. For example, with
human players, a standard protocol is the following. If a player was earlier told that two of
his cards are red, and he is now told that one of them is a 4, he should infer that the other
red is playable. For example, if the red stack in the field has rank 1, he infers that the non-4
red is a 2 and can be played. The employment of such protocols is necessary for efficient
information conveyance, but it requires considering many moves into the past. Although
with human players it is common knowledge [36] what moves have been made, agents cannot
act on them, simply because the observation does not encode them. Crucially, including
the ToM1 objective does not resolve this, since giving the above player the hint that one of
his reds is a 4 is only appropriate if one knows that he knows that he has two reds, which
requires memory of a previous hint.

6.2 Other Methods Tried

We describe some of the other methods we tried. A common approach for training auxiliary
objectives thought to be relevant to the desired task is attaching heads (small models) to
the end of a shared base model and using the head outputs to compute the loss functions
for the auxiliary objectives [37, 38]. A head should be small compared to the base model, so
most of the learning occurs in the weights of the base model, and the heads can be discarded
for downstream tasks. We tried this approach, where the hidden state of size 512 branches
to the different heads for the Q function, ToM0, and ToM1. However, it did not work well,
which we reasoned to be because the shared model is roughly the same size as, rather than
much larger than, each head. Thus, it cannot be assumed that training the ToM heads and
discarding them at inference will improve the model for the Q function.
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We initially posed the ToM0 objective as predicting a ternary classification task for each
attribute for each card in one’s hand, with options (1) attribute present, (2) attribute absent,
(3) abstain. For a prediction with confidence c on an option 1 or 2, a correct prediction has
loss − log2(1 + c) and an incorrect prediction has loss − log2(1 − c). We scale the loss for
option 2 by 1

5 compared to option 1 to account for the label imbalance due to there being 5
colors and 5 ranks. The motivation for these expressions is that, for a correct prediction, the
loss decreases roughly linearly with increasing confidence, and for an incorrect prediction,
the loss approaches infinity as the confidence approaches 1. However, we derived that this
ToM0 objective reduces to cross-entropy loss on the binary classification task without an
abstain option.
With the binary classification ToM0 task, we found that after training for 1000 iterations,
predicted probabilities are quite extremal (close to 0 or 1) and even include near-1 predictions
for multiple colors and multiple ranks. Thus, we changed the objective to a 5-way color or
rank classification task, trained still with cross-entropy loss.
We tried benchmarking in a smaller environment (with fewer colors and ranks) to compare
methods while using less compute, but we found a pattern similar to the full environment,
where even the cheating upper baseline does not outperform the baseline until after several
hundred iterations.

6.3 Future Work

If the base model is scaled up, it would be more reasonable to adopt the shared base model
approach. The advantages of this would be that (1) the number of new parameters to train
for auxiliary objectives is small and (2) the inference cost is unaffected since the training
signal has been embedded into the base model weights and the heads can be discarded. As
a downside, the objectives would no longer be gradient-wise independent, and so jointly
optimizing them requires choosing hyperparameters to weight their loss functions. Also, we
did not modify the priority replay sampling in the base Rainbow, so the ToM objectives
do not affect the priorities, but they should if they are incorporated into a combined loss
function.
In this project, we have considered the self-play setting, where the agents are copies of each
other. The other setting is ad-hoc play, where agents that were trained separately play
together. The ad-hoc setting is difficult for agents that share no training and no significant
prior. Although independently trained agents will likely develop incompatible protocols, it
is reasonable to aim to train agents that can adapt to each other’s protocols by playing a
small number of games together. The ToM objectives we proposed have the potential to
boost fine-tuning for ad-hoc play, since agents directly learn to predict other agents’ beliefs,
allowing them to calibrate their intentions with other agents’ inferences. Furthermore, such
fine-tuning may serve in learning to play with human players too, since humans can be
expected to estimate their beliefs up to at least order 1 ToM.
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